This tutorial is based on a Journal of the Audio Engineering Society review paper being submitted.
2025 marks the centennial of the commercial introduction of the modern dynamic direct radiating loudspeaker, Radiola 104, and the publication of Kellogg and Rice’s paper describing its design. The tutorial outlines the developments leading to the first dynamic loudspeakers and their subsequent evolution. The presentation focuses on direct radiating loudspeakers, although the parallel development of horn technology is acknowledged.
The roots of the dynamic loudspeaker trace back to the moving coil linear actuator patented by Werner Siemens in 1877. The first audio-related application was Sir Joseph Lodge’s 1896 mechanical telephone signal amplifier, or “repeater.” The first moving coil loudspeaker was the Magnavox by Peter Jensen in 1915, but the diaphragm assembly resembled earlier electromagnetic loudspeakers. The Blatthaller loudspeakers by Schottky and Gerlach in 1920’s are another example of a different early use of the dynamic concept.
It is interesting to take a look at the success factors of the dynamic loudspeakers, creating a market for quality sound reproduction and practically replacing the earlier electromagnetic designs by the end of 1920s. The first dynamic loudspeakers were heavy, expensive, and inefficient, but the sound quality could not be matched by any other technology available then. The direct radiating dynamic loudspeaker is also one of the most scalable technologies in engineering, both in terms of size and production volume. The dynamic loudspeaker is also quite friendly in terms of operating voltage and current, and what is important, the sound can be adjusted through enclosure design.
The breadth of the applications of dynamic loudspeakers would not have been possible without the developments in magnet materials. Early dynamic loudspeakers used electromagnets for air gap flux, requiring constant high power (e.g., Radiola 104’s field coil consumed 8W, while peak audio power was about 1W). Some manufacturers attempted steel permanent magnets, but these were bulky. A major breakthrough came with AlNiCo (Aluminum-Nickel-Cobalt) magnets, first developed in Japan in the 1930s and commercialized in the U.S. during World War II. AlNiCo enabled smaller, lighter, and more efficient designs. However, a cobalt supply crisis in 1970 led to the widespread adoption of ferrite (ceramic) magnets, which were heavier but cost-effective. The next advancement especially in small drivers were rare earth magnets introduced in the early 1980s. However, a neodymium supply crisis in the 2000s led to a partial return to ferrite magnets.
One of the focus points of the industry’s attention has been the cone and surround materials for the loudspeaker. Already the first units employed relatively lossy cardboard type material. Although plastic and foam materials were attempted in loudspeakers from 1950’s onwards, plastic cones for larger loudspeakers were successfully launched only in the late 1970’s. Metal cones, honeycomb diaphragms, and use of coatings to improve the stiffness have all brought more variety to the loudspeaker market, enabled by the significant improvement of numerical loudspeaker modelling and measurement methods, also starting their practical use during 1970’s.
A detail that was somewhat different in the first loudspeakers as compared to modern designs was the centering mechanism. The Radiola centering mechanism was complex, and soon simpler flat supports (giving the name “spider”) were developed. The modern concentrically corrugated centering system was developed in the early 1930’s by Walter Vollman at the German Gravor loudspeaker company, and this design has remained the standard solution with little variation.
The limitations of the high frequency reproduction of the early drivers led to improvements in driver design. The high frequency performance of the cone drivers was improved by introducing lossy or compliant areas that attempted to restrict the radiation of high frequencies to the apex part of the cone, and adding a double cone. The introduction of FM radio and improved records led to the need to develop loudspeakers with more extended treble reproduction. The first separate tweeter units were horn loudspeakers, and the first direct radiating tweeters were scaled down cone drivers, but late 1950’s saw the introduction of modern tweeters where the voice coil was outside the radiating diaphragm.
The latest paradigm shift in dynamic loudspeakers is the microspeaker, ubiquitous in portable devices. By manufacturing numbers, microspeakers are the largest class of dynamic loudspeakers, presenting unique structural, engineering, and manufacturing challenges. Their rapid evolution from the 1980s onwards includes the introduction of rare earth magnets, diaphragm forming improvements, and a departure from the cylindrical form factor of traditional loudspeakers. The next phase in loudspeaker miniaturization is emerging, with the first MEMS-based dynamic microspeakers now entering the market.
Saturday May 24, 2025 1:45pm - 2:24pm
CEST
C3
ATM Studio Warsaw, Poland