Loading…
Venue: C1 clear filter
arrow_back View All Dates
Friday, May 23
 

9:15am CEST

Generative AI in Audio Education: Process-Centred Teaching for a Product-Centred World
Friday May 23, 2025 9:15am - 9:35am CEST
Artificial intelligence (AI) tools are transforming the way music is being produced. The rate of development is expeditious, and the associated metamorphosis of audio education is abrupt. Higher-level education is largely built around the objectives of knowledge transmission and skills development, evidenced by the emphasis on learning in the cognitive domain in University programmes. But the cohort of skills that music producers will require in five years’ time is unclear, making skills-based curriculum planning challenging. Audio educators require a systematic approach to integrate AI tools in ways that enhance teaching and learning.

This study uses speculative design as the underpinning research methodology. Speculative design employs design to explore and evaluate possible futures, alternative realities, and sociotechnical trends. In this study, the practical tasks in an existing university module are modified by integrating available GAI tools to replace or augment the task design. This tangible artefact is used to critique prevailing assumptions concerning the use of GAI in music production and audio education. The findings suggest that GAI tools will disrupt the existing audio education paradigm. Employing a process-centred approach to teaching and learning may represent a key progression for educators to help navigate these changes.
Speakers
Friday May 23, 2025 9:15am - 9:35am CEST
C1 ATM Studio Warsaw, Poland

9:35am CEST

A Collaborative and Reflective Framework for Redesigning Music Technology Degree Programmes
Friday May 23, 2025 9:35am - 9:55am CEST
Cyclical formal reviews are essential to keep Music and Audio Technology degree programmes current. Whilst clear institutional guidance exists on the requisite documentation to be submitted, there is little guidance concerning the process used to gather the information. To address this issue, a 12 step collaborative and reflective framework was developed to review a degree programme in Music Technology.

This framework employs Walker’s ‘Naturalistic’ process model and design thinking principles to create a dynamic, stakeholder-driven review process. The framework begins with reflective analysis by faculty, helping to define program identity, teaching philosophy, and graduate attributes. Existing curricula are evaluated using Boehm et al.’s (2018) tetrad framework of Music Technology encompassing the sub-disciplines of production, technology, art, and science. Insights from industry professionals, learners, and graduates are gathered through semi-structured interviews, surveys, and focus groups to address skill gaps, learner preferences, and emerging trends. A SWOT analysis further refines the scope and limitations of the redesign process, which culminates in iterative stakeholder consultations to finalise the program’s structure, content, and delivery.

This process-centred approach emphasises adaptability, inclusivity, and relevance, thus ensuring the redesigned program is learner-centred and aligned with future professional and educational demands. By combining reflective practice and collaborative engagement, the framework offers a comprehensive, replicable model for educators redesigning degree programmes in the discipline. This case study contributes to the broader discourse on curriculum design in music and audio degree programmes, demonstrating how interdisciplinary and stakeholder-driven approaches can balance administrative requirements with pedagogical innovation.
Speakers
avatar for Kevin Garland

Kevin Garland

PhD Researcher, TUS
Kevin Garland is a Postgraduate PhD Researcher at the Technological University of the Shannon: Midlands Midwest (TUS), Ireland. His primary research interests include human-computer interaction, user-centered design, and audio technology. Current research lies in user modelling and... Read More →
Friday May 23, 2025 9:35am - 9:55am CEST
C1 ATM Studio Warsaw, Poland

9:55am CEST

Acoustic Sovereignties: Resounding Indigenous Knowledge in Sound-Based Research
Friday May 23, 2025 9:55am - 10:15am CEST
Acoustic Sovereignties (2024) is a First Nations, anti-colonial spatial audio exhibition held in Naarm (Melbourne), Australia. Through curatorial and compositional practices, Acoustic Sovereignties confronts traditional soundscape and Western experimental sound disciplines by foregrounding marginalised voices.
As this research will show, the foundations of sound-based practices such as Deep Listening and Soundscape Studies consisted of romanticised notions of Indigenous spirituality, in addition to the intentional disregard for First Nations stewardship and kinship with the land and its acoustic composition. Acoustic Sovereignties aims at reclaiming Indigenous representation throughout sound-based disciplines and arts practices by providing a platform for voices, soundscapes and knowledge to be heard.
Speakers
avatar for Hayden Ryan

Hayden Ryan

Graduate Student, RMIT University
My name is Hayden Ryan, I am a First Nations Australian sound scholar and artist, and a 2024 New York University Music Technology Masters graduate. I am currently a Vice Chancellor's Indigenous Pre-Doctoral Fellow at RMIT University, where my PhD focuses on the integration of immersive... Read More →
Friday May 23, 2025 9:55am - 10:15am CEST
C1 ATM Studio Warsaw, Poland

10:40am CEST

Testing Auditory Illusions in Augmented Reality: Plausibility, Transfer-Plausibility and Authenticity
Friday May 23, 2025 10:40am - 11:00am CEST
Experiments testing sound for augmented reality can involve real and virtual sound sources. Paradigms are either based on rating various acoustic attributes or testing whether a virtual sound source is believed to be real (i.e., evokes an auditory illusion). This study compares four experimental designs indicating such illusions. The first is an ABX task suitable for evaluation under the authenticity paradigm. The second is a Yes/No task, as proposed to evaluate plausibility. The third is a three-alternative-forced-choice (3AFC) task using different source signals for real and virtual, proposed to evaluate transfer-plausibility. Finally, a 2AFC task was tested. The renderings compared in the tests encompassed mismatches between real and virtual room acoustics. Results confirm that authenticity is hard to achieve under nonideal conditions, and ceiling effects occur because differences are always detected. Thus, the other paradigms are better suited for evaluating practical augmented reality audio systems. Detection analysis further shows that the 3AFC transfer-plausibility test is more sensitive than the 2AFC task. Moreover, participants are more sensitive to differences between real and virtual sources in the Yes/No task than theory predicts. This contribution aims to aid in selecting experimental paradigms in future experiments regarding perceptual and technical requirements for sound in augmented reality.
Speakers
avatar for Nils Meyer-Kahlen

Nils Meyer-Kahlen

Aalto University
avatar for Sebastia Vicenc Amengual Gari

Sebastia Vicenc Amengual Gari

Sebastia V. Amengual Gari is currently a research scientist at Reality Labs Research (Meta) working on room acoustics, spatial audio, and auditory perception. He received a Diploma Degree in Telecommunications with a major in Sound and Image in 2014 from the Polytechnic University... Read More →
avatar for Sebastian Schlecht

Sebastian Schlecht

Professor of Practice, Aalto University
Sebastian J. Schlecht is Professor of Practice for Sound in Virtual Reality at the Aalto University, Finland. This position is shared between the Aalto Media Lab and the Aalto Acoustics Lab. His research interests include spatial audio processing with an emphasis on artificial reverberation, synthesis, reproduction, and 6-degrees-of-freedom virtual and mixed reality applications. In particular, his research efforts have been directed towards the intersection of app... Read More →
TL

Tapio Lokki

Department of Signal Processing and Acoustics, Aalto University
Friday May 23, 2025 10:40am - 11:00am CEST
C1 ATM Studio Warsaw, Poland

11:00am CEST

Perceptual Evaluation of a Mix Presentation for Immersive Audio with IAMF
Friday May 23, 2025 11:00am - 11:20am CEST
Immersive audio mix presentations involve transmitting and rendering several audio elements simultaneously. This enables next-generation applications, such as personalized playback. Using immersive loudspeaker and headphone MUSHRA tests, we investigate rate vs. quality for a typical mix presentation use case of a foreground stereo element, plus a background Ambisonics scene. For coding, we use Immersive Audio Model and Formats, a recently proposed system for Next-Generation Audio. Excellent quality is achieved at 384 kbit/s, even with reasonable amount of personalization. We also propose a framework for content-aware analysis that can significantly reduce the bitrate even when using underlying legacy audio coding instances.
Speakers
CT

Carlos Tejeda Ocampo

Samsung Research Tijuana
avatar for Jan Skoglund

Jan Skoglund

Google
Jan Skoglund leads a team at Google in San Francisco, CA, developing speech and audio signal processing components for capture, real-time communication, storage, and rendering. These components have been deployed in Google software products such as Meet and hardware products such... Read More →
Friday May 23, 2025 11:00am - 11:20am CEST
C1 ATM Studio Warsaw, Poland

11:20am CEST

Evaluation of auditory distance perception in reflective sound field by static and dynamic virtual auditory display
Friday May 23, 2025 11:20am - 11:40am CEST
A psychoacoustic experiment is conducted to evaluate and compared the auditory distance perception in reflected sound field by using static and dynamic VAD. The binaural signals creased by a point source at different distances in a rectangular room are simulated. The contribution of direct sound to binaural signals is simulated by near-field head-related transfer function filters and a gain factor to account for the propagation attenuation of spherical surface wave. The contribution of early reflections up to the second order and later reverberation are respectively simulated by the image source method and Schroeder reverberation algorithm. The results of psychoacoustic experiment indicates that there are still significant differences between the perceived distances created by static VAD and these created by dynamic VAD in the simulated reflected condition, although the differences are not so large as those in the simulated free-field case. The results of dynamic VAD are more consistent with these of real sound source. Therefore, simulating reflections reduces the in-head-localization and thus improves the control of perceived distance in headphone presentation, but static VAD is still less effective in creating different distance perception. Dynamic VAD is still needed in the distance perception experiment for hearing researches even if simulated reflections are included. In practical applications, dynamic VAD is advocated for recreating virtual source at different distance.
Friday May 23, 2025 11:20am - 11:40am CEST
C1 ATM Studio Warsaw, Poland

11:40am CEST

Subjective evaluation of immersive microphone arrays for drums
Friday May 23, 2025 11:40am - 12:00pm CEST
Through a practice-oriented study, various coincident, near-coincident, and non-coincident immersive microphone arrays were compared during drum recordings for different contemporary popular music genres. In a preliminary study, the OCT-3D, PCMA-3D, 2L-Cube, Hamasaki Square, IRT Cross, Ambisonics A-Format, and native B-Format were informally compared, revealing that the differences between non-coincident systems were much smaller than the differences between coincident and non-coincident systems. This led to a reduction in microphone systems for the final drum recordings. Four microphone techniques were selected: OCT-3D, native B-Format, Ambisonics A-Format, and IRT Cross. These were compared within the context of two different songs – a calm pop track and an energetic rock song – where the drums were respectively recorded in a dry drum booth and a large studio hall. Through a listening test with a small sample group, it was determined which microphone technique was best suited for each song. Participants were also asked to identify the general favorite, without musical context, as well as how the spatiality, timbre, and height were perceived. It was concluded that the choice of immersive microphone technique depends on the musical context. Conclusions from more objective studies focus primarily on accurate localization, with non-coincident systems consistently performing the best. However, these studies do not take into account the musical context, where accurate localization does not always take precedence. Furthermore, it was noted that height perception in music is not solely created by speakers in the height range. The comparative drum recordings are published through https://www.immersive.pxl.be/immersive- microphone-techniques-for-drums/.
Speakers
avatar for Arthur Moelants

Arthur Moelants

Researcher, PXL Music Research
avatar for Steven Maes

Steven Maes

Founder of Motormusic Studios, Researcher & Lecturer at PXL Music, PXL Music
Friday May 23, 2025 11:40am - 12:00pm CEST
C1 ATM Studio Warsaw, Poland

12:00pm CEST

Key Technology Briefings 2
Friday May 23, 2025 12:00pm - 1:15pm CEST
Friday May 23, 2025 12:00pm - 1:15pm CEST
C1 ATM Studio Warsaw, Poland

1:30pm CEST

Discrimination of vowel-like timbre quality: A case of categorical perception?
Friday May 23, 2025 1:30pm - 1:50pm CEST
This study investigated whether categorical perception—a phenomenon observed in speech perception—extends to the discrimination of vowel-like timbre qualities. Categorical perception occurs when continuous acoustic variations are perceived as distinct categories, leading to better discrimination near category boundaries than within a category. To test this, discrimination thresholds for the center frequency of a one-third-octave band formant introduced into the spectrum of a pink noise burst were measured in five subjects using an adaptive psychophysical procedure. Thresholds were assessed at distinctive formant frequencies of selected Polish vowels and at boundaries between adjacent vowel categories along the formant-frequency continuum. Results showed no reduction in discrimination thresholds at category boundaries, suggesting an absence of categorical perception for vowel-like timbre. One possible explanation for this finding lies in the listening mode—a concept from ecological auditory research—describing cognitive strategies in auditory tasks. The design of both the stimuli and the experimental procedure likely encouraged an acousmatic listening mode, which focuses solely on the sensory characteristics of sound, without reference to its source or meaning. This may have suppressed cues typically used in the categorical perception of speech sounds, which are associated with the communication listening mode. These findings highlight the importance of considering listening mode in future research on categorical perception of timbre and suggest that vowel-like timbre discrimination may involve perceptual mechanisms distinct from those used in speech sound discrimination.
Friday May 23, 2025 1:30pm - 1:50pm CEST
C1 ATM Studio Warsaw, Poland

1:50pm CEST

Speech intelligibility in noise: A comparative study of musicians, audio-engineers, and non-musicians
Friday May 23, 2025 1:50pm - 2:10pm CEST
Published studies indicate that musicians outperform non-musicians in a variety of non-musical auditory tasks, a phenomenon known as the “musicians’ hearing advantage effect.” One widely reported benefit is enhanced speech-in-noise (SIN) recognition. It was observed that musicians’ speech-in-noise (SIN) recognition thresholds (SRTs) are lower than those of non-musicians, though findings—mainly from English-language studies—are mixed; some confirm these advantage, while others do not. This study extends SRT measurements to Polish, a language with distinct phonetic characteristics. Participants completed a Polish speech intelligibility test, reconstructing sentences masked by multitalker babble noise by selecting words from a list displayed on a computer screen. Speech levels remained constant while masking noise was adjusted adaptively: increasing after each correct response and decreasing after each error. Three groups were tested: musicians, musically trained audio engineers, and non-musicians. Results showed that musicians and audio engineers had SRTs 2 and 2.7 dB lower than non-musicians, respectively. Although audio engineers exhibited slightly lower SRTs than musicians, the difference was minimal, with statistical significance just above the conventional 5% threshold. Thus, under these conditions, no clear advantage of audio engineers over musicians in SIN performance was observed.
Friday May 23, 2025 1:50pm - 2:10pm CEST
C1 ATM Studio Warsaw, Poland

2:10pm CEST

Exploring stimulus spacing bias in MUSHRA listening tests using labeled and unlabeled graphic scales
Friday May 23, 2025 2:10pm - 2:30pm CEST
The multi-stimulus test with hidden reference and anchor (MUSHRA) is a prevalent method for the subjective audio quality evaluation. Despite its popularity, the technique is not immune to biases. Empirical evidence indicates that the presence of labels (quality descriptors) equidistantly distributed along the rating scale may be the cause of its non-linear warping; however, other factors could evoke even stronger non-linear effects. This study aims to investigate the hypothesis that stimulus spacing bias may induce a greater magnitude of non-linear warping of the quality scale compared to that caused by the presence of labels. To this end, a group of more than 120 naïve listeners participated in MUSHRA-compliant listening tests using labeled and unlabeled graphic scales. The audio excerpts, representing two highly skewed distributions of quality levels, were reproduced over headphones in an acoustically treated room. The findings of this study verify the postulated hypothesis and shed new light on the mechanisms biasing results of the MUSHRA-conformant listening tests.
Friday May 23, 2025 2:10pm - 2:30pm CEST
C1 ATM Studio Warsaw, Poland

2:30pm CEST

Investigating Listeners’ Emotional and Physiological Responses to Varying Apparent Width and Horizontal Position of a Single Sound Source
Friday May 23, 2025 2:30pm - 2:50pm CEST
This research aims to explore the impact of variations in apparent sound source width and position on emotional and physiological responses among listeners, with a particular focus on the domain of virtual reality applications. While sound is recognized as a potent elicitor of strong emotions, the specific role of spatial characteristics, such as apparent sound source width, has not been systematically analyzed. The authors’ previous study has indicated that the spatial distribution of sound can alter perceptions of scariness. In contrast, the current study explores whether adjustments in apparent sound source width can significantly affect emotional valence and arousal, as well as human physiological metrics. The objective of this study was to investigate the impact of a single sound source width and its horizontal position on emotional engagement, thereby providing valuable insights for advancements in immersive audio experiences. Our experiments involved conducting listening tests in a spatial sound laboratory, utilizing a circular setup of sixteen loudspeakers to present a range of audio stimuli drawn from five selected recordings. The stimuli were manipulated based on two key parameters: the apparent sound source width and the spatial positioning of the sound source (front, back, left, or right). Participants assessed their emotional reactions using the Self-Assessment Manikin (SAM) pictogram method. Physiological data, including electroencephalogram, blood volume pressure, and electrodermal activity was collected in real-time via wearable sensors consisting of an EEG headset and a finger-attached device.
Friday May 23, 2025 2:30pm - 2:50pm CEST
C1 ATM Studio Warsaw, Poland

2:50pm CEST

A study on reverberation in a virtual acoustic setting using the Lexicon 960L Reverb Processor
Friday May 23, 2025 2:50pm - 3:10pm CEST
This paper describes ongoing research on integrating algorithmic reverberation tools designed for audio post-production into virtual acoustics, focusing on using Impulse Responses (IRs) captured from the legendary Lexicon 960L hardware reverberation unit. While previous research from the McGill University Virtual Acoustics Technology (VAT) Lab has utilized room impulse responses (RIRs) captured from various performance halls to create active acoustic environments in the recording studio, this study analyzes the perceived differences between the two listening environments and the effect of the VATLab speakers and effect of room acoustics on IRs captured from 5.0 multichannel reverb presets. Three of these multichannel IRs have been chosen to simulate a Lexicon 960L “environment” in a physical space.

Objective measurements in McGill University’s Immersive Media Laboratory (IMLAB) Control Room and in VATLab following the ISO 3382 standard measure the effect of the physical room and the omnidirectional dodecahedral speakers used for auralization. Through a subjective pilot study, subjective analysis investigates the perceived differences between the Lexicon IRs in VATLab and a control condition, the IMLAB control room. The results of an attribute rating test on perceived immersion, soundfield continuity, tone color, and overall listening experience between the two spaces helps us better understand how reverberation algorithms designed for multichannel mixing/post-production translate to a virtual acoustics system.
In conclusion, we discuss the perceptual differences between the IMLAB Control Room and VATLab and results of objective measurements.
Speakers
AA

Aybar Aydin

PhD Candidate, McGill University
avatar for Kathleen Zhang

Kathleen Zhang

McGill University
avatar for Richard King

Richard King

Professor, McGill University
Richard King is an Educator, Researcher, and a Grammy Award winning recording engineer. Richard has garnered Grammy Awards in various fields including Best Engineered Album in both the Classical and Non-Classical categories. Richard is an Associate Professor at the Schulich School... Read More →
Friday May 23, 2025 2:50pm - 3:10pm CEST
C1 ATM Studio Warsaw, Poland

3:10pm CEST

Detection of spectral component asynchrony: Applying psychoacoustic research to transient phenomena in music
Friday May 23, 2025 3:10pm - 3:30pm CEST
Numerous studies highlight the role of transient behavior in musical sounds and its impact on sound identification. This study compares these findings with established psychoacoustic measurements of detection thresholds for asynchrony in onset and offset transients, obtained using synthesized stimuli that allowed precise control of stimulus parameters. Results indicated that onset asynchrony can be detected at thresholds as low as 1 ms—even half a cycle of the component frequency. In contrast, offset asynchrony detection was found to be less precise, with thresholds ranging from 5 to 10 ms. Sensitivity improves when multiple harmonics are asynchronous. Additionally, component phase significantly influences onset asynchrony detection: at 1000 Hz and above, phase shifts raise thresholds from below 1 ms to around 50 ms, while having little effect on offset detection. Although these findings were based on controlled artificial stimuli, they can provide valuable insight into asynchrony in natural musical sounds. In many cases, detection thresholds are well below the variations observed in music, yet under certain conditions and frequencies, some temporal variations may become not perceptible.
Speakers
Friday May 23, 2025 3:10pm - 3:30pm CEST
C1 ATM Studio Warsaw, Poland

4:15pm CEST

Key Technology Briefings 3
Friday May 23, 2025 4:15pm - 6:00pm CEST
Friday May 23, 2025 4:15pm - 6:00pm CEST
C1 ATM Studio Warsaw, Poland
 


Share Modal

Share this link via

Or copy link

Filter sessions
Apply filters to sessions.
Filtered by Date - 
  • Acoustic Transducers & Measurements
  • Acoustics
  • Acoustics of large performance or rehearsal spaces
  • Acoustics of smaller rooms
  • Acoustics of smaller rooms Room acoustic solutions and materials
  • Acoustics & Sig. Processing
  • AI
  • AI & Machine Audition
  • Analysis and synthesis of sound
  • Archiving and restoration
  • Audio and music information retrieval
  • Audio Applications
  • Audio coding and compression
  • Audio effects
  • Audio Effects & Signal Processing
  • Audio for mobile and handheld devices
  • Audio for virtual/augmented reality environments
  • Audio formats
  • Audio in Education
  • Audio perception
  • Audio quality
  • Auditory display and sonification
  • Automotive Audio
  • Automotive Audio & Perception
  • Digital broadcasting
  • Electronic dance music
  • Electronic instrument design & applications
  • Evaluation of spatial audio
  • Forensic audio
  • Game Audio
  • Generative AI for speech and audio
  • Hearing Loss Protection and Enhancement
  • High resolution audio
  • Hip-Hop/R&B
  • Impact of room acoustics on immersive audio
  • Instrumentation and measurement
  • Interaction of transducers and the room
  • Interactive sound
  • Listening tests and evaluation
  • Live event and stage audio
  • Loudspeakers and headphones
  • Machine Audition
  • Microphones converters and amplifiers
  • Microphones converters and amplifiers Mixing remixing and mastering
  • Mixing remixing and mastering
  • Multichannel and spatial audio
  • Music and speech signal processing
  • Musical instrument design
  • Networked Internet and remote audio
  • New audio interfaces
  • Perception & Listening Tests
  • Protocols and data formats
  • Psychoacoustics
  • Room acoustics and perception
  • Sound design and reinforcement
  • Sound design/acoustic simulation of immersive audio environments
  • Spatial Audio
  • Spatial audio applications
  • Speech intelligibility
  • Studio recording techniques
  • Transducers & Measurements
  • Wireless and wearable audio